OLLSCOIL NA HÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS, 2006

B.E. DEGREE (ELECTRICAL)

PRODUCTION ENGINEERING ME4002

> Professor J. Monaghan Professor P. J. Murphy Dr. W. M. D. Wright

Time allowed: 3 hours

Answer any *five* questions

All questions carry equal marks

The use of a Casio fx570w or fx570ms calculator is permitted

The use of mathematics tables is permitted

1. The prototype component shown below in Figure 1 is to be manufactured in a high shrinkage polymer by injection moulding. The component consists of a 60x40x32mm box containing two 5mm thick partitions, four identical hollow cylindrical bosses, two 5x8mm through-holes in the vertical sides along section *C*-*C*, and two end-slots 5x2x24mm along section *B-B* as shown. Criticise the design and suggest improvements, using sketches where appropriate to illustrate your answers. All dimensions are in mm. (Diagrams are not to scale.)

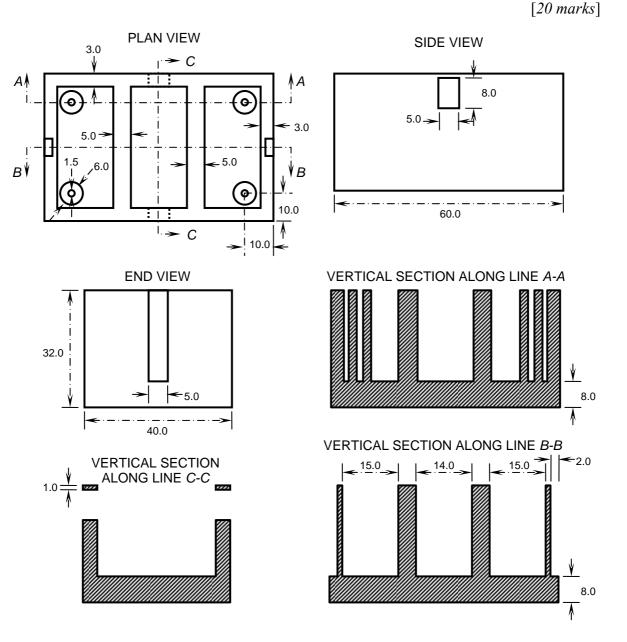


Figure 1: Component geometry for Question 1.

(Questions continued on next page)

2. A heat sink with ten identical fins has the cross-section shown below in Figure 2 and is to be manufactured by direct extrusion in an aluminium alloy from a cylindrical billet 100mm in diameter and 0.5m long. The ten fins of the heat sink are equally sized and spaced. The required ram pressure p is given by:

$$p = K_x \overline{Y}_f \left(\varepsilon_x + \frac{2L_0}{D_0} \right)$$

and the shape factor K_x by:

$$K_x = 0.98 + 0.02 \left(\frac{C_x}{C_c}\right)^{2.25}$$

where C_x and C_c are the perimeters of the component and equivalent area circle respectively. Calculate the reduction ratio, the true strain ε_x (assuming a = 0.27 and b = 1.8), the average flow stress \overline{Y}_f (assuming K = 240MPa and n = 0.15), and hence the ram force F required. Assuming that no butt remains in the extruder, calculate the length of extruded heat sink that will be produced. (Figure 2 is not drawn to scale, all dimensions are in mm).

[20 marks]

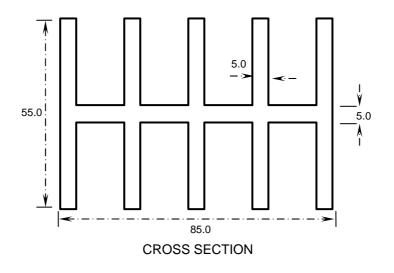


Figure 2: Component geometry for Question 2.

3. The 'T'-piece shown overleaf in Figure 3 is to be constructed from 5 pieces of mild steel: two pieces of straight pipe, and three flat circular flange plates. The overall length of the component is 500mm; all other dimensions may be estimated. Assess the suitability of the component for manufacture by (a) manual arc welding, and (b) adhesive bonding, giving advantages and disadvantages of the proposed design for each process. For both manufacturing techniques, suggest design modifications to improve the accuracy and integrity of the finished component. (Diagram is not drawn to scale.)

[20 marks]

(Questions continued on next page)

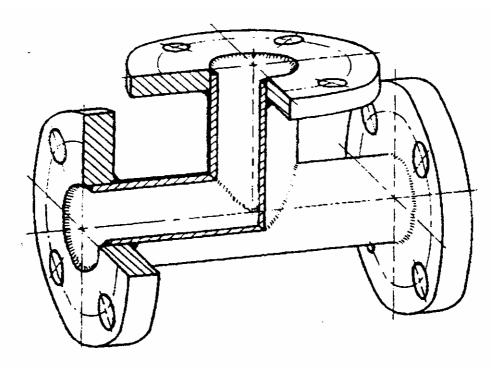


Figure 3: Component assembly for Question 3.

4. Every summer, an oil-fired power station must shut down one of its four boilers for two weeks so that the equipment may be inspected for defects. Of particular concern are the two tube bundles in the condenser. Both bundles consist of 4,000 individual stainless steel tubes that pass through holes in support plates at each end and at 2m intervals along their length. The tubes have an outer diameter of 30mm, a nominal wall thickness of 4mm, and are 10m long. Only access to the inside of each tube at either end is possible. The tubes are susceptible to internal and external corrosion that gradually thins the tube wall over the middle 6m of the tube, external radial cracks near the tube supports, and internal and external longitudinal cracks anywhere along the tube length.

All leaking tubes, and any tubes that are deemed likely to fail before the next annual shutdown, must be blanked off before the condenser is put back in service. Critical defects are cracks more than 30% deep, and wall thinning of more than 50%. If more than 40% of the tubes in a bundle are defective, the entire bundle must be replaced.

Describe how the tube bundles could be inspected using eddy current testing, using sketches where appropriate. Answers should include details of the principles of applicable eddy current techniques, the apparatus required, critical parameters, any precautions required to ensure detection of the defects outlined above, and any advantages and disadvantages of the proposed methods.

[20 marks]

(Questions continued on next page)

5. (a) Describe the four main scattering mechanisms which may occur as X-rays or γ -rays pass through a material. Explain how the scattered radiation may degrade the quality of a radiographic image, and hence define the term "build up factor".

[10 marks]

(b) A butt weld joining two lengths of steel plate 10mm thick is to be inspected using Xrays. A radiographic film is placed 0.5 m from the far side of the joint, and an X-ray tube with a 5mm diameter aperture and 150kV potential is situated 150mm from the near side of the joint. For a 2mm wide defect located on the far side of the joint at the weld root, calculate:

(i) the minimum wavelength of the source;

(ii) the geometric unsharpness;

- (iii) the magnification of the defect;
- (iv) the size of the defect as it appears on the radiograph.

 $(h = 6.626 \text{ x } 10^{-34} \text{ Js}, c = 3 \text{ x } 10^8 \text{ ms}^{-1}, e = 1.602 \text{ x } 10^{-19} \text{ C})$

[10 marks]

- 6. For each NDT requirement given below, describe the most suitable method of achieving the stated objective. Give a brief outline of the underlying theory and state any precautions to be taken to ensure consistent, reproducible results. Support your answers with sketches as appropriate and use qualitative arguments where possible.
 - (a) Accurately determine the depth of surface-breaking cracks more than 2mm deep in an aluminium storage vessel with walls 20mm thick. The locations of the defects are known, having been determined previously by ultrasonic inspection.

[7 marks]

- (b) Detecting delaminations in 0.5x0.5m square composite panels, consisting of five layers of 1 mm thick polymer sheet, bonded together with adhesive. The technique should be capable of determining which of the layers have delaminated. [7 marks]
- (c) Detecting surface-breaking cracks and small sub-surface defects larger than 1mm in steel shafts.

[6 marks]

(End)

(*Material property sheet overleaf*)

PROPERTIES OF TYPICAL ENGINEERING MATERIALS

Material	Alloy constituents	0.1% proof (yield) stress	Young's modulus	Density	Specific heat capacity	Coefficient of linear thermal expansion	Thermal conduct- ivity	Electrical resistivity (per cube)	Relative cost	
METALS AND ALLOYS	% by mass	σ _y (MPa)	<i>E</i> (GPa)	ρ x 10 ³ (kg·m ⁻³)	с (10 ³ J⋅kg ⁻¹ ⋅K ⁻¹)	α (10 ⁻⁶ ·K ⁻¹)	λ (W·m ⁻¹ ·K ⁻¹)	ρ _e (Ω·m)	(k€m ⁻³)	Notes
CAST IRON grey malleable STEEL mild medium carbon alloy stainless	3.5C 2.5C 0.06-0.25C 0.25-0.6C Ni Cr Mo 0.2C 16Cr	100-250 250-500 250-500 250-700 700-1000 500-1000	100-150 170 210 210 215 215	(kg·lii) 7.0-7.4 7.3 7.9 7.9 7.9 7.9 7.8	0.52 0.52 0.45 0.45 0.45 0.45 0.5	(10 4K) 11 11 11 11 11 11 10	50 40 50 50 50 30 25	700x10 ⁻⁹ 340x10 ⁻⁹ 120x10 ⁻⁹ 230x10 ⁻⁹ 300x10 ⁻⁹ 720x10 ⁻⁹	0.8 1.0 1.2 1.5 2 4-7	Martensitic
MAGNESIUM alloy ALUMINIUM pure alloy TITANIUM alloy ZINC alloy	0.1C 18Cr 8Ni 8AI 0.5Zn 4Cu 1Mg 4AI 4Mn 4AI 1Cu	200-800 150-250 30-140 125-400 1000 250	215 40 70 70 110 108	7.8 1.8 2.7 2.8 4.5 7	0.5 1.0 0.88 0.9 0.5 0.4	16 25 27 27 9 30	16 100 240 180 17 ⁽¹⁾ 100	740x10 ⁻⁹ 600x10 ⁻⁹ 36x10 ⁻⁹ 38x10 ⁻⁹ 500x10 ⁻⁹ (1) 700x10 ⁻⁹	4-7 7 2.2 3.4 80 3.2	"Duralumin" (¹⁾ Pure metal "Mazak"
NICKEL alloy COPPER pure bronze brass	Cr Co 7.5 Sn 30-40 Zn	100-800 50-300 150-750 150-500	190 130 100 100	8.5 8.9 8.9 8.5	0.4 0.38 0.38 0.37	13 17 18 18-23	15 400 60 130	1200x10 ⁻⁹ 17x10 ⁻⁹ 140x10 ⁻⁹ 65x10 ⁻⁹	30 8 20 9	"Inconel"/"Nimonic"
THERMOPLASTIC POLYMERS		Ultimate tensile stress (MPa)								
Polyethylene PE Polyvinyl chloride PVC Polytetrafluoroethylene PTFE Polystyrene PS Polymethylmethacrylate PMMA Polyamide (nylon) PA ⁽ⁱⁱ⁾ Polyacetal (Polyoxymethylene) POM Acrylonitrile-butadiene styrene ABS		5-25 25-35 60 15-40 50 50-70 50-90 65 20-40	0.1-1.0 1-1.5 2.5 4-6 1-3 3 1-3 3 2	0.9-0.95 0.9 1.4 2.2 1.1 1.2 1.1 1.4 1-1.1	2.3 1-2 1 1.3 1.5 1.6 1.4	100-200 110-170 50 100-200 60-80 50-90 80-150 30-35 60-100	0.4 0.2 0.15 0.25 0.15 0.2 0.22 0.22	$>10^{14}$ $>10^{14}$ $>10^{17}$ $>10^{11}$ $>10^{12}$ $>10^{10}$ $>10^{11}$ $>10^{15}$	0.6 0.7 1 22 0.7 1.6 2.5 2.0 1.2	"Fluon"/"Teflon" "Perspex" "Kematal"
Polyethylene terephthalate PET ^(g) Polycarbonate PC ^(g)		70-170 ⁽¹⁾ 60-70	2.3 2.8	1.3 1.2	1.3	20 ⁽¹⁾ 70	0.15	>10 ¹⁹ 10 ¹⁶	2.2 2.4	"Melinex"/"Mylar" ⁽¹⁾ Oriented film
THERMOSETTING POLYMERS Epoxy and polyester: 'GRP', 'DMC', 'SMC' Phenol, urea, melamine- formaldehyde ^(g) Note: Po					1.7 1.7 eased by x2 to a en values for σ			>10 ¹⁶ >10 ¹² loading only.	1.7 1.1-2.4	'Glass fibre reinforced plastics'
RUBBERS						Max usable temp.				
Natural (polyisoprene) Polyurethane Neoprene (polychloroprene) Nitrile Fluorocarbon		20 25 20 15 15	0.001 to 1.0 as required	0.9-1.2 1.1 1.2 1 1.8	1.9-1.4	(°C) 85 85 95 115 290	0.13-0.16	10 ⁶ -10 ¹⁶	0.5 3.0 2.0 1.0 35.0	Soft →Hard
WOOD pine		20-100	15 ⁽¹⁾ 1 ⁽²⁾	0.5	2.8	3-5 ⁽¹⁾ 35-60 ⁽²⁾	0.15	10 ¹⁰ (dry)	0.4	⁽¹⁾ along grain
GLASS crown CONCRETE		30-90 15-70 ⁽¹⁾	70 15-40	2.5 2-2.5	0.7 0.8-1.2	8.5 10-20	1 1.5-2.5	>10 ⁹ 10 ² -10 ⁹	1.0 0.25	⁽²⁾ across grain ⁽¹⁾ compressive (cube)
FLUIDS		Viscosity	Bulk Modulus			Coefficient of volumetric expansion			Relative cost	
WATER pure sea		η (10 ⁻³ Pa·s) 1 ⁽¹⁾ 1	<i>k</i> (Pa) 2.2x10 ⁹	1 1.03	4.19 3.9	β (10 ⁻³ K ⁻¹) 0.2	0.67	5x10 ³ 1	(€m ⁻³) 0.2	⁽¹⁾ tap water at 20°C
OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa		300 ⁽¹⁾ 20 ⁽²⁾ 0.02	1.7x10 ⁹ 10 ⁵	0.9 1.2x10 ⁻³	2 1	1 3.7	0.15 0.032	>10 ¹⁰ →∞	400	⁽¹⁾ at 20°C ⁽²⁾ at 100°C
HYDROGEN at 20°C, 10 ⁵ Pa	Density	0.009 Longitudina		0.084x10 ⁻³		3.7	0.14	→∞ Density	2 Longitudinal	Shear
ACOUSTIC PROPERTIES	(kg·m ⁻³) 2790	velocity (m·s ⁻¹) 6320	velocity (m⋅s ⁻¹) 3130		ACOUSTIC PROPERTIES CARBON (Pressed graphite)			(kg·m ⁻³) 1800	velocity (m·s ⁻¹) 2400	velocity (m·s ⁻¹)
BRASS (70Cu 30Zn) COPPER IRON (Cast) LEAD	8640 8930 7220 11200	4700 5010 4600 200	2100 2270 2600 700		EPOXY RÉSIN GLASS NYLON PERSPEX (PMMA)			1100 2240 1120 1180	2440 5100 2600 2700	2800 1100 1300
MAGNESIUM NICKEL STEEL mild STEEL stainless TITANIUM TUNGSTEN	1738 8840 7800 7890 4510 19400	5800 5600 5900 5790 6100 5200	3000 3000 3200 3100 3100 2900		POLYETHYLENE POLYPROPYLENE RUBBER (Neoprene) SILICON NITRIDE WOOD pine			900 880 1310 3270 450	1950 2660 1600 11000 3500	540 6250 Piezoelectric
AIR (@20°C and 1 atm)	7000 1.2 x 10 ⁻³	4200 344	2400		PIEZOELECTRIC MATERIALS LITHIUM NIOBATE LEAD-ZIRCONATE-TITANATE (PZT)			4700 7500	7080 4440	pressure (V·m·N ⁻¹) 0.37 0.24

 AIR (@20°C and 1 atm)
 1.2 x 10°3
 344
 LEAD-ZIRCONATE-TITANATE (PZT)
 7500
 4440
 0.24

 OIL
 880
 1700
 PVDF
 1800
 2300
 0.23

 WATER (@20°C)
 1000
 1480
 QUARTZ
 2650
 5750
 0.58

 Shear velocity may be approximated to one half of the longitudinal velocity. All values shown vary with exact material composition. Many materials exhibit significant anisotropy.