OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS, 2005

B.E. DEGREE (ELECTRICAL)

PRODUCTION ENGINEERING ME4002

> Professor J. Monaghan Professor R. Yacamini Dr. W. M. D. Wright

Time allowed: 3 hours

Answer any *five* questions

All questions carry equal marks

The use of a Casio fx570w or fx570ms calculator is permitted

The use of mathematics tables is permitted

1. The component shown in Figure 1 is to be cast in a eutectic alloy, and consists of a 15.0cm thick square upper plate with a 10.0cm x 40.0cm rectangular through slot, connected via two 15.0cm square pillars 50cm long to a 12.0cm thick cylindrical base plate with two 10.0cm diameter through holes. Using Chvorinov's modulus technique, and clearly stating any feeding criteria, calculate the solidification sequence of the component before riser placement. Show whether a single riser covering the shaded surface A for the full 15.0cm width of the pillar for a length L = 37.0cm is capable of feeding the entire component. Determine the minimum height of the riser. Figure 1 is not drawn to scale, all dimensions are in cm.

Figure 1: Component geometry for Question 1.

2. (a) Explain in detail what is meant by springback in sheet metal forming, and describe three ways in which it may be eliminated.

[8 marks]

(b) The bracket shown below in Figure 2 is to be manufactured from 3.0mm thick brass sheet, with four 110° bends as shown, produced by a sequence of punching, notching and wiping operations. The outer two bends have a radius of 8.0mm, the inner two bends have a radius of 5.0mm. (Diagram is not drawn to scale).

Calculate the following:

- (i) the total length *L* of the starting blank and the location *y* of the central two holes. If R < 2t, $K_{BA} = 0.33$; If $R \ge 2t$, $K_{BA} = 0.5$
- (ii) the hole clearance and the actual diameters of the punches and dies required, given an allowance a of 6%
- (iii) the wiping tool angle, assuming a springback of 5%

Figure 2: Component geometry for Question 2.

3. (a) Describe the sequence of cooling mechanisms that occur when a mild steel cylindrical bar is quenched from 1000°C in water. Explain how vapour traps are formed, and how they may be eliminated.

[8 marks]

- (b) Using the continuous cooling transformation diagram in Figure 3 overleaf, determine the final composition and hardness value in 0.13%C steel for:
 - (i) a 0.2mm diameter bar cooled in air
 - (ii) a 20mm diameter bar cooled in oil
 - (iii) a 200mm diameter bar cooled in water

[12 marks]

Figure 3: CCT diagram for Question 3.

4. (a) A high-sensitivity radiograph of 1mm wide surface-breaking cracks in an aluminium sample that varies in thickness from 150mm to 180mm is required. Given that:

$$d_{SF} = d_{SO} \left(1 + \frac{U_s}{s} \right)$$

where U_g is the geometric unsharpness, determine the minimum source-to-film distance for:

- (i) a 200kV 10mA X-ray tube with an effective spot size of 3mm
- (ii) a 4mm diameter Iridium-192 source with an activity of 3700GBq

$$(U_f \text{ for }^{192}\text{Ir is } 0.17\text{mm}, 1 \text{ Ci} = 3.7 \times 10^{10} \text{ disintegrations/second}).$$

[8 marks]

(b) Calculate the required exposure time for both sources in part (a).

[12 marks]

Figure 4: Exposure chart for Question 4. (Chart shown is for a d_{SF} of 1m giving a density of 2.0)

Figure 5: Film unsharpness (U_f) curve for Question 4.

RADIATION	STEEL	ALUMINIUM	LUMINIUM MAGNESIUM		LEAD	
X-RAYS (kV):						
50	1.0	17.5	29.0	0.75	0.19	
100	1.0	13.0	20.0	0.68	0.12	
150	1.0	8.0	18.0	0.75	0.09	
200	1.0	6.3	14.0	0.70	0.075	
300	1.0	5.2	-	0.65	0.06	
400	1.0	4.5	-	0.60	-	
γ-RAYS:						
Ir-192	1.0	3.0	-	0.9	0.25	
Co-60	1.0	-	-	0.9	0.65	

Table I: Equivalent thickness factors for Question 4.

- 5. For each NDT requirement given below, describe the most suitable method of achieving the stated objective. Give a brief outline of the underlying theory and outline any precautions to be taken to ensure consistent, reproducible results. Support your answers with sketches as appropriate and qualitative arguments where possible.
 - (a) Detect all surface-breaking cracks wider than 1µm in ceramic insulators used on overhead electricity pylons.

[6 marks]

(b) Accurately determine the depth of surface-breaking cracks more than 2mm deep in an aluminium storage vessel with walls 20mm thick. The locations of the defects are known, having been determined previously by ultrasonic inspection.

[7 marks]

(c) Monitor the propagation of known cracks in a steel railway viaduct that has been in service for over 50 years.

[7 marks]

6. The component shown below in Figure 4 is manufactured from 3 pieces of mild steel by an automated precision welding process. The two flanges are welded circumferentially inside and outside to the ends of a section of rolled tube that has a longitudinal weld running its entire length. The overall length of the component is 800mm; all other dimensions may be estimated. Occasionally the following three critical defects are produced; circumferential cracks in the flange welds, longitudinal cracks in the tube weld, and lack-of-penetration defects between the two flange welds (arrowed). Outline the principles and methods that would be required to locate and characterise the aforementioned defects larger than 0.1mm in the component by ultrasonic techniques, using piezoelectric transducers. (The curvature of the tube and flanges may be ignored.) Answers should include critical parameters, and any special considerations to ensure reliable and consistent detection of the described defects. (Diagram is not drawn to scale).

Figure 6: Component assembly for Question 6.

PROPERTIES OF TYPICAL ENGINEERING MATERIALS

Material	Alloy constituents	0.1% proof (yield) stress	Young's modulus	Density	Specific heat capacity	Coefficient of linear thermal	Thermal conduct- ivity	Electrical resistivity (per cube)	Relative cost		
METALS AND ALLOYS % by mas		σ _y (MPa)	E (GPa)	$\rho \times 10^3$ (kg.m ⁻³)	C (10 ³ l.kg ⁻¹ .K ⁻¹)	α	λ (W.m ⁻¹ .K ⁻¹)	ρ_{e}	(k€m ⁻³)	Not	es
CAST IRON grey	3.5C	100-250	100-150	7.0-7.4	0.52	11	50	700x10 ⁻⁹	0.8		
malleable mild	2.5C	250-500	170	7.3	0.52	11	40	340x10 ⁻⁹	1.0		
medium carbon	0.25-0.6C	250-500	210	7.9	0.45	11	50	230x10 ⁻⁹	1.5		
alloy	Ni Cr Mo	700-1000	215	7.9	0.45	11	30	300x10 ⁻⁹	2		
stainless	0.2C 16Cr 0.1C 18Cr 8Ni	500-1000 200-800	215	7.8 7.8	0.5	10 16	25 16	720x10° 740x10 ⁻⁹	4-7 4-7	Martensitic Austenitic	
MAGNESIUM alloy	8AI 0.5Zn	150-250	40	1.8	1.0	25	100	600x10 ⁻⁹	7	Austennie	
ALUMINIUM pure	10	30-140	70	2.7	0.88	27	240	36x10 ⁻⁹	2.2	"D	
TITANIUM allov	4Cu 1Mg 4Al 4Mn	125-400	70 110	2.8	0.9	27	180 17 ⁽¹⁾	38x10 500x10 ^{-9 (1)}	3.4 80	⁽¹⁾ Pure met	al
ZINC alloy	4AI 1Cu	250	108	7	0.4	30	100	700x10 ⁻⁹	3.2	"Mazak"	
NICKEL alloy	Cr Co	100-800	190	8.5	0.4	13	15	1200x10 ⁻⁹	30	"Inconel"/"	Nimonic"
COPPER pure bronze	7.5 Sn	50-300 150-750	130	8.9	0.38	17	400	17x10 ⁻⁹	8 20		
brass	30-40 Zn	150-500	100	8.5	0.37	18-23	130	65x10 ⁻⁹	9		
		Ultimate			1						
THERMOPLASTIC POLYMERS		tensile									
		stress									
Polyothylono PE		(MPa) 5-25	01-10	0.0-0.05	2.2	100-200	0.4	>10 ¹⁴	0.6	<u> </u>	
Polypropylene PP ^(g)		25-35	1-1.5	0.9-0.95	2.5	110-200	0.4	>10 ¹⁴	0.8		
Polyvinyl chloride PVC		60	2.5	1.4	1-2	50	0.15	>1014	1		
Polytetrafluoroethylene PTFE		15-40	4-6	2.2	1	100-200	0.25	>10" >10 ¹¹	22	"Fluon"/"Te	eflon"
Polymethylmethacrylate PMMA		50-70	3	1.1	1.5	50-80	0.15	>10	1.6	"Perspex"	
Polyamide (nylon) PA ^(g)		50-90	1-3	1.1	1.6	80-150	0.22	>10 ¹⁰	2.5		
Polyacetal (Polyoxymethylene) POM		65	3	1.4	1.4	30-35	0.25	>10 ¹¹	2.0	"Kematal"	
Polyethylene terephthalate PET ^(g)		70-170 ⁽¹⁾	2.3	1-1.1	1.3	20 ⁽¹⁾		>10 >10 ¹⁹	2.2	"Melinex"/"	'Mvlar"
D () () () () () () () () () (-		1016		⁽¹⁾ Oriented	film
		60-70	2.8	1.2		70	0.15	10.°	2.4		
Energy and polyoster: (GPP' (DMC' (SMC'		90-130	20-20	15-20	17	15-30	0.2-0.4	>10 ¹⁶	17	Glass fibre	
Epoxy and polyester. GRF, DMC, SMC		90-130	20-30	1.5-2.0	1.7	15-50	0.2-0.4	>10	1.7	reinforced	, plastics'
Phenol, urea, melamine- formaldehyde ⁽⁹⁾	(9) \	30-50	5-8	1.4-2.0	1.7	30-45	0.2	>10 ¹²	1.1-2.4		
Note: Po	lymers exhibit	creep at roon	n temperati	ure. The giv	en values for o	and E are for	short-term	loading only	-		
						Max usable				<u> </u>	
RUBBERS						temp.					
Natural (polvisoprene)		20		0.9-1.2	1.9-1.4	85	0.13-0.16	10 ⁶ -10 ¹⁶	0.5	Soft →Harc	1
Polyurethane		25	0.001 to	1.1		85			3.0		
Neoprene (polychloroprene)		20	1.0 as	1.2		95			2.0		
Fluorocarbon		15	requirea	1.8		115 290			1.0		
WOOD pine		20-100	15 ⁽¹⁾	0.5	2.8	3-5 ⁽¹⁾	0.15	10 ¹⁰ (dry)	0.4	⁽¹⁾ along gra	in
GLASS crown		30-90	1 ··/ 70	2.5	0.7	35-60	1	>10 ⁹	1.0	· across gr	ain
CONCRETE		15-70 ⁽¹⁾	15-40	2-2.5	0.8-1.2	10-20	1.5-2.5	10 ² -10 ⁹	0.25	(1) compres	sive
										(cube)	
			Bulk			Coefficient			Relative cost		
51.1112.0		Viscosity	Modulus			of					
FLUIDS						volumetric					
		η	k			β			(€m ⁻³)		
		(10 ⁻³ Pa·s)	(Pa)	L		(10 ⁻³ K ⁻¹)				(D .	
WAIER pure		1 ''	2.2x10°	1	4.19	0.2	0.67	5x10°	0.2	⁽¹⁾ tap water	r at 20°C
OIL engine (10W50)		300 ⁽¹⁾	1.7x10 ⁹	0.9	2	1	0.15	>10 ¹⁰	400	(1)at 20°C	
	20 ⁽²⁾	5							⁽²⁾ at 100°C		
AIR at 20°C, 10° Pa HYDROGEN at 20°C 10 ⁵ Pa	0.02	10 ³ 10 ⁵	1.2x10 ⁻³	1	3.7	0.032	→∞ >∞	2			
		0.005	10	0.004710	14	5.7	0.14		2	1	
*	Density	Longitudina	I Shear					Density	Longitudinal	Shear	
ACOUSTIC PROPERTIES	(kg⋅m⁻³)	velocity	velocity		ACOUS	TIC PROPER	TIES	(kg·m⁻³)	velocity	velocity	
ALUMINIUM ("Duralumin") 2790		6320	3130		CARBON (Pres	ssed graphite	e)	1800	2400	(11.5.)	
BRASS (70Cu 30Zn) 8640		4700	2100		EPOXY RÈSIN	5p. 14		1100	2440		
COPPER 8930		5010	2270		GLASS			2240	5100	2800	
LEAD 11200		200	700	1	PERSPEX (PM	MA)		1120	2700	1300	
MAGNESIUM 1738		5800	3000		POLYETHYLE	NE		900	1950	540	
NICKEL 8840		5600	3000	1	POLYPROPYL	ENE		880	2660		
STEEL stainless 7890		5790	3200		SILICON NITR	IDE		3270	11000	6250	
TITANIUM 4510		6100	3100	1	WOOD pine			450	3500		
TUNGSTEN 19400		5200	2900		PIEZOELI	CTRIC MAT	ERIALS			Piezoel	ectric
	7000	4200	2400	1	LITHIUM NIOB	ATE		4700	7080	pressure (0.3	(v•m•n) 7
			1	1	1					1	

 AIR (@20°C and 1 atm)
 1.2 x 10°3
 344
 LEAD-ZIRCONATE-TITANATE (PZT)
 7500
 4440
 0.24

 OIL
 880
 1700
 PVDF
 1800
 2300
 0.23

 WATER (@20°C)
 1000
 1480
 QUARTZ
 2650
 5750
 0.58

 Shear velocity may be approximated to one half of the longitudinal velocity. All values shown vary with exact material composition. Many materials exhibit significant anisotropy.