OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS, 2003

B.E. DEGREE (ELECTRICAL)

PRODUCTION ENGINEERING ME4002

> Professor J. Monaghan Professor R. Yacamini Dr. W. M. D. Wright

Time allowed: 3 hours

Answer three questions from BOTH sections

All questions carry equal marks

The use of a Casio fx570w or fx570ms calculator is permitted

SECTION A: MATERIALS PROCESSING AND DESIGN FOR MANUFACTURE

1. (a) In any manufacturing process that uses dies or moulds, the final geometry of any component may be difficult to control. Show that both mechanical and thermal effects may make dimensional accuracy difficult to achieve in the finished component. In each case, use example calculations for both a metal and a polymer to illustrate your answers. [12 marks]

(b) Explain the concept of draft angles and where they are required in permanent dies and moulds, using diagrams to illustrate your answer as appropriate. Explain why draft angles are still required for components made in consumable moulds.

[8 marks]

2. (a) The component shown below in Figure 1 is to be cast in a eutectic alloy, and consists of an upper stepped plate connected via a 10mm diameter cylindrical pillar to a flat base plate with a 10mm diameter through hole as shown. Using Chvorinov's modulus technique, calculate the solidification sequence of the component. All dimensions are in mm. (Diagrams are not drawn to scale.)

[15 marks]

(b) A design engineer has suggested that by reducing the height h of the flat base plate from 10mm to 5mm it may be possible to cast the component using a single feeder located on the shaded end surface F of the top stepped plate as shown. Clearly stating any feeding criteria, prove the validity of the engineer's claim.

Figure 1: Component geometry for Question 2.

3. The prototype component shown below in Figure 2 is to be manufactured in a high shrinkage polymer by injection moulding. Criticise the design and suggest improvements. All dimensions are in mm. (Diagrams are not drawn to scale.)

Figure 2: Polymer component for Question 3.

4. The 'T'-piece shown below in Figure 3 is to be constructed from 5 pieces of mild steel. The overall length of the component is 500mm; all other dimensions may be estimated. Discuss the suitability of the component for manufacture by (a) manual arc welding, and (b) adhesive bonding. For both manufacturing techniques, suggest design improvements to ensure the accuracy and integrity of the finished component. (Diagram is not drawn to scale.)

[20 marks]

(End of Section A)

SECTION B: NON-DESTRUCTIVE TESTING

5. (a) Describe the four main scattering mechanisms which may occur as X-rays or γ -rays pass through a material. Explain how the scattered radiation may degrade the quality of a radiographic image, and hence define the term "build up factor".

[10 marks]

(b) A butt weld joining two lengths of steel plate 10 mm thick is to be inspected using X-rays. A radiographic film is placed 0.5 m from the far side of the joint, and an X-ray tube with a 5 mm diameter aperture and 150 kV potential is situated 150 mm from the near side of the joint. For a 2 mm wide defect located on the far side of the joint at the weld root, calculate:

- (i) the minimum wavelength of the source;
- (ii) the geometric unsharpness;
- (iii) the magnification of the defect;
- (iv) the size of the defect as it appears on the radiograph.

 $(h = 6.626 \text{ x } 10^{-34} \text{ J} \cdot \text{s}, c = 3 \text{ x } 10^8 \text{ m} \cdot \text{s}^{-1}, e = 1.602 \text{ x } 10^{-19} \text{ C})$

[10 marks]

- 6. For each NDT requirement given below, describe a suitable method of achieving the stated objective. Give a brief outline of the underlying theory and outline any precautions to be taken to ensure consistent, reproducible results. State any advantages or limitations of the particular methods chosen, supporting your answers with quantitative arguments wherever possible.
 - (a) detecting surface-breaking cracks 1µm or more wide in ceramic insulators used on overhead electricity pylons.

[6 marks]

(b) detecting areas of delamination in composite panels, consisting of five layers of 1 mm thick polymer sheet, bonded together with adhesive. The technique should be capable of determining which of the layers have delaminated.

[7 marks]

(c) measuring the variations in conductivity of copper alloy bar produced in long lengths 1 cm in diameter intended for carrying very high electrical currents.

[7 marks]

7. A company wishes to use ultrasound to monitor steel for internal shrinkage cavities and inclusions as it emerges from a continuous casting process. The steel section will be moving at speeds of up to 2 m/min and will be at a temperature of between 800°C and 1100°C. Describe a suitable non-contact ultrasonic inspection system based on laser generation of ultrasound, and detection of ultrasound by EMATs. The system should use both longitudinal and shear waves. Answers should include details of the generation and detection principles, any precautions required to ensure consistent and reliable results, and advantages and disadvantages of the proposed inspection technique.

[20 marks]

8. Outline the basic principles and methods involved in non-destructive testing (NDT) of engineering materials by magnetisation. Answers should include a description of an application in which such magnetic methods of NDT could be used, the nature and type of defects that the test could be expected to reveal, the advantages and disadvantages of using magnetic methods, any special considerations to ensure reliable and consistent results, and ways of improving the sensitivity of the technique.

[20 marks]

(End of Section B)

PROPERTIES OF TYPICAL ENGINEERING MATERIALS

Material	Alloy constituents	0.1% proof (yield) stress	Young's modulus	Density	Specific heat capacity	Coefficient of linear thermal	Thermal conduct- ivity	Electrical resistivity (per cube)	Relative cost	
	% by mass	a,	Е	ρ x 10 ³	c	expansion α	λ	D o	(k€m ⁻³)	Notes
METALS AND ALLOTS		(MPa)	(GPa)	(kg m ⁻³)	(10 ³ J·kg ⁻¹ ·K ⁻¹)	(10 ⁻⁶ ·K ⁻¹)	(W·m ⁻¹ ·K ⁻¹)	(Ω·m)	· ,	
CAST IRON grey malleable	3.5C 2.5C	100-250 250-500	100-150 170	7.0-7.4	0.52	11 11	50 40	700x10° 340x10 ⁻⁹	0.8	
STEEL mild	0.06-0.25C	250-500	210	7.9	0.45	11	50	120x10 ⁻⁹	1.2	
medium carbon	0.25-0.6C	250-700 700-1000	210	7.9	0.45	11	50	230x10 ⁻⁹	1.5	
stainless	0.2C 16Cr	500-1000	215	7.8	0.5	10	25	720x10 ⁻⁹	4-7	Martensitic
MACNERUM	0.1C 18Cr 8Ni	200-800	215	7.8	0.5	16	16	740x10 ⁻⁹	4-7	Austenitic
ALUMINIUM pure	8AI 0.5Zh	30-140	40 70	2.7	0.88	25 27	240	36x10 ⁻⁹	2.2	
alloy	4Cu 1Mg	125-400	70	2.8	0.9	27	180	38x10 ⁻⁹	3.4	"Duralumin"
TITANIUM alloy	4AI 4Mn	1000 250	110 108	4.5	0.5	9 30	17 100	500x10 ⁻⁹	80 3.2	"Pure metal "Mazak"
NICKEL alloy	Cr Co	100-800	190	8.5	0.4	13	15	1200x10 ⁻⁹	30	"Inconel"/"Nimonic"
COPPER pure	75.00	50-300	130	8.9	0.38	17	400	17x10 ⁻⁹	8	
bronze	7.5 Sn 30-40 Zn	150-750 150-500	100 100	8.9 8.5	0.38	18 18-23	60 130	140x10 ⁻⁹ 65x10 ⁻⁹	20	
THERMORI ASTIC POLYMERS		Ultimate								
		stress								
		(MPa)		L				14		
Polyethylene PE Polypropylene PP ^(g)		5-25 25-35	0.1-1.0	0.9-0.95	2.3	100-200 110-170	0.4	>10 ¹⁴	0.6	
Polyvinyl chloride PVC		60	2.5	1.4	1-2	50	0.15	>10 ¹⁴	1	
Polytetrafluoroethylene PTFE		15-40	4-6	2.2	1	100-200	0.25	>10 ¹⁷	22	"Fluon"/"Teflon"
Polystyrene PS Polymethylmethacrylate PMMA		50 50-70	1-3 3	1.1 1.2	1.3	60-80 50-90	0.15	>10 >10 ¹²	0.7	"Perspex"
Polyamide (nylon) PA ^(g)		50-90	1-3	1.1	1.6	80-150	0.22	>1010	2.5	
Polyacetal (Polyoxymethylene) POM		65 20-40	3	1.4	1.4	30-35 60-100	0.25	>10 ¹¹	2.0	"Kematal"
Polyethylene terephthalate PET ^(g)		70-170 ⁽¹⁾	2.3	1.3	1.3	20 ⁽¹⁾		>10 ¹⁹	2.2	"Melinex"/"Mylar"
Polyaerhanata DC ^(g)		60 70	2.0	4.2		70	0.45	4016	24	⁽¹⁾ Oriented film
		60-70	2.0	1.2		70	0.15	10	2.4	
				1500		15.00		1016		(0) (1)
Epoxy and polyester: 'GRP', 'DMC', 'SMC'		90-130	20-30	1.5-2.0	1.7	15-30	0.2-0.4	>10.°	1.7	'Glass fibre reinforced plastics'
Phenol, urea, melamine- formaldehyde ^(g)		30-50	5-8	1.4-2.0	1.7	30-45	0.2	>10 ¹²	1.1-2.4	
Note: Po	⁽⁹⁾ W	th glass fibre	filler, UTS temperature	and E incre	eased by x2 to x	3, density by and E are for	y +0.2 short-term	oading only	,	
	lymers exhibit t		rtemperatt	ire. The give	en values for 0		Short-term	bading only	•	
DUBBEDS						Max usable				
ROBBERS						(°C)				
Natural (polyisoprene)		20		0.9-1.2	1.9-1.4	85	0.13-0.16	10 ⁶ -10 ¹⁶	0.5	Soft →Hard
Polyurethane		25 20	0.001 to	1.1		85 95			3.0	
Nitrile		15	required	1.2		115			1.0	
Fluorocarbon		15		1.8		290			35.0	
WOOD pine		20-100	15 ⁽¹⁾	0.5	2.8	3-5 ⁽¹⁾	0.15	10 ¹⁰ (drv)		
		-0.00	4 (2)	0.0			U.13		0.4	⁽¹⁾ along grain
GLASS crown			1.1.1	ł		35-60 ⁽²⁾	0.15	10 (ury)	0.4	⁽¹⁾ along grain ⁽²⁾ across grain
CONORETE		30-90 15-70 ⁽¹⁾	70 15-40	2.5	0.7	35-60 ⁽²⁾ 8.5 10-20	0.15 1 1 5-2 5	>10 ⁹ 10 ² -10 ⁹	0.4 1.0 0.25	⁽¹⁾ along grain ⁽²⁾ across grain ⁽¹⁾ compressive
		30-90 15-70 ⁽¹⁾	70 15-40	2.5 2-2.5	0.7 0.8-1.2	35-60 ⁽²⁾ 8.5 10-20	1 1.5-2.5	>10 ⁹ 10 ² -10 ⁹	0.4 1.0 0.25	⁽¹⁾ along grain ⁽²⁾ across grain ⁽¹⁾ compressive (cube)
		30-90 15-70 ⁽¹⁾	70 15-40	2.5 2-2.5	0.7 0.8-1.2	35-60 ⁽²⁾ 8.5 10-20	1 1.5-2.5	>10 ⁹ 10 ² -10 ⁹	0.4 1.0 0.25	⁽¹⁾ along grain ⁽²⁾ across grain ⁽¹⁾ compressive (cube)
		30-90 15-70 ⁽¹⁾ Viscosity	70 15-40 Bulk Modulus	2.5 2-2.5	0.7 0.8-1.2	35-60 ⁽²⁾ 8.5 10-20 Coefficient of	1 1.5-2.5	>10 ⁹ 10 ² -10 ⁹	0.4 1.0 0.25 Relative cost	(¹⁾ along grain ⁽²⁾ across grain ⁽¹⁾ compressive (cube)
FLUIDS		30-90 15-70 ⁽¹⁾ Viscosity	70 15-40 Bulk Modulus	2.5 2-2.5	0.7 0.8-1.2	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric	1 1.5-2.5	>10 ⁹ 10 ² -10 ⁹	0.4 1.0 0.25 Relative cost	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube)
FLUIDS		30-90 15-70 ⁽¹⁾ Viscosity	70 15-40 Bulk Modulus	2.5 2-2.5	0.7 0.8-1.2	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion	1 1.5-2.5	>10 ⁹ 10 ² -10 ⁹	0.4 1.0 0.25 Relative cost	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube)
FLUIDS		30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa·s)	70 15-40 Bulk Modulus k (Pa)	2.5 2-2.5	0.7 0.8-1.2	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion β (10 ⁻³ Κ ⁻¹)	1 1.5-2.5	>10 ⁹ 10 ² -10 ⁹	0.4 1.0 0.25 Relative cost (€m ⁻³)	(¹⁷ along grain (²⁾ across grain (¹⁾ compressive ((cube)
FLUIDS WATER pure		30-90 15-70 ⁽¹⁾ Viscosity η (10 ³ Pa·s) 1 ⁽¹⁾	70 15-40 Bulk Modulus k (Pa) 2.2x10 ³	2.5 2-2.5	0.7 0.8-1.2	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion (10 ⁻³ Κ ⁻¹) 0.2	0.13	>10 ⁹ 10 ² -10 ⁹ 5x10 ³	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive ((cube)
FLUIDS WATER pure sea Oll engine (10W50)		30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa-s) 1 ⁽¹⁾ 1 300 ⁽¹⁾	70 15-40 Bulk Modulus k (Pa) 2.2x10 ³	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion β (10 ⁻³ Κ ¹) 0.2	0.13	5x10 ³ 5x10 ³ 5x10 ³	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹⁾ tap water at 20°C (¹⁾ at 20°C
FLUIDS WATER pure sea OIL engine (10W50)		$\begin{array}{c} 30-90\\ 15-70^{(1)} \end{array}$ Viscosity $\begin{array}{c} \eta\\ (10^{-3} \text{ Pa-s})\\ 1 \\ 1\\ 300 \\ (1)\\ 20 \\ (2) \end{array}$	70 15-40 Bulk Modulus <i>k</i> (Pa) 2.2x10 ⁹ 1.7x10 ⁹	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2	$\begin{array}{c} 35-60 \\ 8.5 \\ 10-20 \\ \hline \\ \text{Coefficient} \\ \text{of} \\ \text{volumetric} \\ \text{expansion} \\ \frac{10^{\mathcal{S}} \mathcal{K}^{-1}}{0.2} \\ 1 \\ \end{array}$	0.13 1 1.5-2.5 0.67 0.15	5x10 ³ 5x10 ³ 5x10 ³	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹⁾ tap water at 20°C (¹⁾ at 20°C (²⁾ at 10°C
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa		30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa-s) 1 ⁽¹⁾ 1 300 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.02	70 15-40 Bulk Modulus <i>k</i> (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1	$35-60^{(2)} \\ 8.5 \\ 10-20 \\ \hline \\ coefficient \\ of \\ volumetric \\ expansion \\ \frac{10^{S} K^{-1}}{0.2} \\ 1 \\ 3.7 \\ 2.7 \\ \hline \\ 2.7 \\ \hline \\ $	0.13 1 1.5-2.5 0.67 0.15 0.032 0.44	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 →∞	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹⁾ tap water at 20°C (¹⁾ at 20°C (²⁾ at 100°C
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa		$\begin{array}{c} 30-90\\ 15-70^{(1)} \end{array}$ Viscosity (10^{3} Pa-s) $1^{(1)}$ $1^{(1)}$ $1^{(1)}$ $20^{(2)}$ 0.02 0.009	70 15-40 Bulk Modulus (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵	2.5 2-2.5 1 1.03 0.9 1.2x10 ⁻³ 0.084x10 ⁻³	0.7 0.8-1.2 4.19 3.9 2 1 14	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion β(10 ³ K ¹) 0.2 1 3.7 3.7	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 →∞ →∞	0.4 1.0 0.25 Relative cost (€m³) 0.2 400 2	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹⁾ tap water at 20°C (¹⁾ at 20°C (²⁾ at 100°C
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa	Density	30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa-s) 1 ⁽¹⁾ 1 300 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina	70 15-40 Bulk Modulus (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ Shear	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion β(10 ³ K ¹) 0.2 1 3.7 3.7	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 →∞ →∞	0.4 1.0 0.25 Relative cost (€m³) 0.2 400 2 Longitudinal	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹⁾ tap water at 20°C (¹⁾ at 20°C (²⁾ at 100°C
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*]	Density (kg⋅m³)	30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa-s) 1 ⁽¹⁾ 1 300 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Uongitudina velocity (moc ⁻¹)	70 15-40 Bulk Modulus (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ Shear velocity (m c ⁻¹)	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 ACOUS	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion β(10 ⁻³ K ⁻¹) 0.2 1 3.7 3.7	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES [*]	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 →∞ →∞ Density (kg·m ⁻³)	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m ⁻¹)	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹⁾ tap water at 20°C (¹⁾ at 20°C (²⁾ at 100°C Shear velocity (m s ⁻¹)
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*] ALUMINIUM ("Duralumin")	Density (kg·m ⁻³) 2790	30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa-s) 1 ⁽¹⁾ 1 300 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 0.009 Longitudina velocity (m·s ⁻¹) 6320	70 15-40 Bulk Modulus (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 ACOUS ² CARBON (Pres	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion β(10 ⁻³ K ¹) 0.2 1 3.7 3.7 TIC PROPER ssed graphite	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES [*] a)	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 >10 ¹⁰ →∞ →∞ Density (kg·m ⁻³) 1800	0.4 1.0 0.25 Relative cost (€m³) 0.2 400 2 Longitudinal velocity (m·s ⁻¹) 2400	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹¹⁾ tap water at 20°C (¹¹) tap water at 20°C (¹¹) tap water at 20°C (²⁾ at 100°C Shear velocity (m·s ⁻¹)
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*] ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn)	Density (kg·m³) 2790 8640	30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa-s) 1 ⁽¹⁾ 1 300 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 0.009 Longitudina velocity (m·s ⁻¹) 6320 4700	70 70 15-40 Bulk Modulus k (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 2100	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 CARBON (Pres EPOXY RESIN	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion β(10 ³ K ¹) 0.2 1 3.7 3.7 TIC PROPER	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES [*] a)	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 >10 ¹⁰ →∞ →∞ Density (kg·m ⁻³) 1800 1100	0.4 1.0 0.25 Relative cost (€m³) 0.2 400 2 Longitudinal velocity (m·s ⁻¹) 2400 2440	(¹¹⁾ along grain (²¹ across grain (¹¹) compressive (cube) (¹¹⁾ tap water at 20°C (¹¹⁾ at 20°C (²¹ at 100°C Shear velocity (m-s ⁻¹)
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES ⁵ ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn) COPPER URON (Cast)	Density (kg·m ⁻³) 2790 8640 8930 7220	30-90 15-70 ⁽¹⁾ Viscosity (10 ³ Pa·s) 1 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina velocity (m·s ⁻¹) 6320 4700 5010 4600	70 70 15-40 Bulk Modulus k (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ Shear velocity (m·s ⁻¹) 3130 2270 2270	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 ACOUS [*] CARBON (Pres EPOXY RESIN GLASS NYLON	$35-60 (2) \\ 8.5 \\ 10-20 \\ \hline 0 \\ volumetric \\ expansion \\ (10^{S} K^{-1}) \\ 0.2 \\ 1 \\ 3.7 \\ 3.7 \\ 3.7 \\ \hline TIC PROPER \\ ssed graphite \\ \hline 0 \\ 0 \\ 0.2 \\ 1 \\ 0.2 \\ 1 \\ 0.2 \\ 0.$	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES ¹ =)	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 >10 ¹⁰ →∞ →∞ Density (kg·m ⁻³) 1800 1100 2240 1120	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m ^{-s⁻¹}) 2400 2440 5100 2600	(¹¹⁾ along grain (²¹ across grain (¹¹ compressive (cube) (¹¹⁾ tap water at 20°C (¹¹⁾ at 20°C (²² at 100°C Shear velocity (m·s ⁻¹) 2800 1100
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*] ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn) COPPER IRON (Cast) LEAD	Density (kg.m ⁻⁵) 2790 8640 8930 7220 11200	30-90 15-70 ⁽¹⁾ Viscosity 10 ⁻³ Pa-s) 1 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina velocity (m-s ⁻¹) 6320 4700 5010 4600 200	70 70 15-40 Bulk Modulus k (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ Shear velocity (m.s ⁻¹) 3130 2270 2600 700	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 CARBON (Pres EPOXY RESIN GLASS NYLON PERSPEX (PM	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion (10 ⁻³ K ⁻¹) 0.2 1 3.7 3.7 TIC PROPER	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES [*]	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 →∞ →∞ Density (kg·m ⁻³) 1800 1100 2240 1120 1180	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m·s ⁻¹) 2400 2440 5100 2600 2700	(¹⁷⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹¹⁾ tap water at 20°C (¹¹⁾ at 20°C (²⁾ at 100°C Shear velocity (m·s ⁻¹) 2800 1100 1300
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES ⁵ ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn) COPPER IRON (Cast) LEAD MAGNESIUM	Density (kg.m ⁻³) 2790 8640 8930 7220 11200 11200 1738	30-90 15-70 ⁽¹⁾ Viscosity 10 ⁻³ Pa-s) 1 ⁽¹⁷⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina velocity (m.s ⁻¹) 6320 4700 5010 4600 200 5800	70 70 15-40 Bulk Modulus k (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 2100 2270 2600 700 3000 3000	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 ACOUS [*] CARBON (Pres EPOXY RESIN GLASS NYLON PERSPEX (PM POLYETHYLEI	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion (10 ⁻³ K ⁻¹) 0.2 1 3.7 3.7 TIC PROPER ssed graphite	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES [*]	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 >10 ¹⁰ →∞ →∞ Density (kg·m ⁻³) 1800 1100 2240 1120 1180 900	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m.s ⁻¹) 2400 2440 5100 2600 2700 1950	(¹⁷⁾ along grain (²⁷⁾ across grain (¹¹⁾ compressive (cube) (¹¹⁾ tap water at 20°C (¹¹⁾ at 20°C (²² at 100°C Shear velocity (m·s ⁻¹) 2800 1100 1300 540
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*] ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn) COPPER IRON (Cast) LEAD MAGNESIUM NICKEL STFFI mild	Density (kg·m ⁻³) 2790 8640 8930 7220 11200 11200 1738 8840 7800	30-90 15-70 ⁽¹⁾ Viscosity 10 ⁻³ Pa-s) 1 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina velocity (m.s ⁻¹) 6320 4700 5010 4600 200 5800 5600 5600	70 70 15-40 Bulk Modulus k (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ Shear velocity (m·s ⁻¹) 3130 2270 2600 700 3000 3000 3000	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 CARBON (Pree EPOXY RESIN GLASS NYLON PERSPEX (PM POLYETHYLEI POLYETHYLEI POLYETHYLEI POLYETHYLEI	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion (10 ⁻³ K ⁻¹) 0.2 1 3.7 3.7 TIC PROPER seed graphite	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES [*]	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 >10 ¹⁰ →∞ →∞ Density (kg·m ⁻³) 1800 1100 2240 1120 1180 900 880 1310	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m·s ⁻¹) 2400 2400 2400 2400 2400 2400 2400 2600 2600 2600 2600 2660 1950 2660 1600	(¹⁷⁾ along grain (²⁷⁾ across grain (¹¹⁾ compressive (cube) (¹¹⁾ tap water at 20°C (¹¹⁾ at 20°C (²² at 100°C Shear velocity (m·s ⁻¹) 2800 1100 1300 540
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*] ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn) COPPER IRON (Cast) LEAD MAGNESIUM NICKEL STEEL mild STEEL stainless	Density (kg·m ⁻³) 2790 8640 8930 7220 11200 11200 11200 1738 8840 7800 7890	30-90 15-70 ⁽¹⁾ Viscosity (10 ⁻³ Pa-s) 1 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina velocity (m.s ⁻¹) 6320 4700 5010 4600 200 5800 5800 5800 5790	70 15-40 Bulk Modulus k (Pa) 2.2x10 ³ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 2100 2270 2600 700 2270 2600 3000 3000 3000 3100	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 CARBON (Pree EPOXY RESIN GLASS NYLON PERSPEX (PM POLYETHYLEI POLYETHYLEI POLYETHYLEI POLYETHYLEI POLYETHYLEI SILICON NITRI	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion (10 ⁻³ K ⁻¹) 0.2 1 3.7 3.7 TIC PROPER seed graphite MA) NE ENE prene) DE	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES ⁵	5x10 ³ 10 ² -10 ⁹ 5x10 ³ 1 >10 ¹⁰ →∞ →∞ Density (kg·m ⁻³) 1800 1100 2240 1120 1180 900 880 1310 3270	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m·s ⁻¹) 2400 2400 2400 2400 2400 2400 2400 2400 2400 2600 2700 1950 2660 1000 11000	(¹⁷⁾ along grain (²⁷⁾ across grain (¹¹⁾ compressive (cube) (¹¹⁾ tap water at 20°C (¹¹⁾ at 20°C (²⁷⁾ at 100°C Shear velocity (m-s ⁻¹) 2800 1100 1300 540 6250
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*] ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn) COPPER IRON (Cast) LEAD MAGNESIUM NICKEL STEEL mild STEEL stainless TITANIUM TUNCETEN	Density (kg·m ⁻³) 2790 8640 8930 7220 11200 1738 8840 7800 7890 4510	30-90 15-70 ⁽¹⁾ Viscosity (10 ³ Pa-s) 1 ⁽¹⁾ 1 300 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina velocity (m.s ⁻¹) 6320 4700 5010 4600 200 5510 4600 200 5500 5500 55900 5790 6100	70 15-40 Bulk Modulus k (Pa) 2.2x10 ⁹ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 2000 2600 700 3000 3000 3000 3100 3100 3100	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 CARBON (Prese EPOXY RESIN GLASS NYLON PERSPEX (PM POLYETHYLE! POLYPROPYL RUBBER (Neo SILICON NITR! WOOD pine	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion <i>β</i> (10 ⁻³ K ⁻¹) 0.2 1 3.7 3.7 TIC PROPER issed graphite MA) NE ENE prene) DE	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES [*]	<pre>>10⁹ (10⁹) >10²-10⁹ 10²-10⁹ >>∞ >>∞ Density (kg·m⁻³) 1800 1100 2240 1120 1180 900 880 1310 3270 450</pre>	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m·s ⁻¹) 2400 2440 2400 2400 2400 2600 2700 2700 2700 2600 2000 2	(¹⁷⁾ along grain (²⁷⁾ across grain (¹¹⁾ compressive (cube) (¹¹⁾ tap water at 20°C (¹¹⁾ at 20°C (²¹⁾ at 20°C (²¹⁾ at 20°C (²¹⁾ at 100°C Shear velocity (m·s ⁻¹) 2800 1100 1300 540 6250
FLUIDS WATER pure sea OIL engine (10W50) AIR at 20°C, 10 ⁵ Pa HYDROGEN at 20°C, 10 ⁵ Pa ACOUSTIC PROPERTIES [*] ALUMINIUM ("Duralumin") BRASS (70Cu 30Zn) COPPER IRON (Cast) LEAD MAGNESIUM NICKEL STEEL mild STEEL stainless TITANIUM TUNGSTEN ZINC	Density (kg·m ⁻³) 2790 8640 8930 7220 11200 1738 8840 7800 7890 4510 19400 7000	30-90 15-70 ⁽¹⁾ Viscosity (10 ³ Pa-s) 1 ⁽¹⁷⁾ 1 300 ⁽¹⁾ 20 ⁽²⁾ 0.02 0.009 Longitudina velocity (m.s ⁻¹) 6320 4700 5010 4600 200 5510 4600 2500 5500 5790 6100 5200 4200	70 15-40 Bulk Modulus k (Pa) 2.2x10 ³ 1.7x10 ⁹ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ 2100 2100 2270 2600 700 3000 3000 3000 3000 3100 3100 2400	2.5 2-2.5	0.7 0.8-1.2 4.19 3.9 2 1 14 CARBON (Pres EPOXY RESIN GLASS NYLON PERSPEX (PM POLYETHYLE! POLYPROPYL RUBBER (Neo SILICON NITR! WOOD pine PIEZOELE	35-60 ⁽²⁾ 8.5 10-20 Coefficient of volumetric expansion <i>β</i> (10 ⁻³ K ⁻¹) 0.2 1 3.7 3.7 TIC PROPER issed graphite State St	0.13 1 1.5-2.5 0.67 0.15 0.032 0.14 TIES ⁵ P)	5x10 ³ 10 ² -10 ⁹ 5x10 ¹⁰ →∞ →∞ Density (kg·m ⁻³) 1800 1100 2240 1120 1180 900 880 1310 3270 450	0.4 1.0 0.25 Relative cost (€m ⁻³) 0.2 400 2 Longitudinal velocity (m·s ⁻¹) 2400 2400 2400 2400 2400 2600 2700 2700 2700 2600 200 2000 2	(¹⁾ along grain (²⁾ across grain (¹⁾ compressive (cube) (¹⁾ tap water at 20°C (¹⁾ at 20°C (²⁾ at 100°C Shear velocity (m·s ⁻¹) 2800 1100 1300 540 6250 Piezoelectric pressure (V·m·N ⁻¹)

 AIR (@20°C and 1 atm)
 1.2 x 10°3
 344
 LEAD-ZIRCONATE-TITANATE (PZT)
 7500
 4440
 0.24

 OIL
 880
 1700
 PVDF
 1800
 2300
 0.23

 WATER (@20°C)
 1000
 1480
 QUARTZ
 2650
 5750
 0.58