OLLSCOIL NA hÉIREANN, CORCAIGH
 THE NATIONAL UNIVERSITY OF IRELAND, CORK
 COLÁISTE NA hOLLSCOILE, CORCAIGH
 UNIVERSITY COLLEGE, CORK

AUTUMN EXAMINATIONS, 2004

B.E. DEGREE (ELECTRICAL)

TELECOMMUNICATIONS
EE4004
Professor G. W. Irwin
Professor P. J. Murphy
Dr. K. G. McCarthy
Mr. C. Murphy

Time allowed: 3 hours
Answer six questions.
The use of mathematical log tables and a Casio fx570w or fx570ms calculator is permitted.

1. (a) Compare the capacities of BPSK, QPSK, and QAM systems and discuss the factors that influence the choice of a particular modulation scheme?
[7 marks]
The capacity of a digital microwave link is to be increased by changing the modulation scheme from 64 QAM to 256 QAM. If the existing capacity of the link is six 5 MHz video channels with a signal to quantisation noise level better than 44 dB , how many video channels may be carried in the new system if the S / N is to be better than 50 dB ?
[6 marks]
(b) Indicate briefly what is meant by each of the following terms; noise figure, antenna noise temperature and system noise temperature.
[7 marks]
2. (a) Contrast the operation of time division multiple access (TDMA) techniques in satellite and mobile communications systems.
[10 marks]
(b) For Local Area Networks based on the Ethernet protocol describe the following: -

Page 1 of 4
(i) The CSMA/CD algorithm.
(ii) The truncated binary exponential back-off algorithm.
3. (a) For a data communication system consisting of a transmitter, a receiver and a dedicated link between them, discuss and give formulas for the following link quantities: -
(i) The latency.
[3 marks]
(ii) The utilization.
[2 marks]
(b) For the system described in (a) illustrate the data and acknowledgement flow versus time if the link uses a "go back N" acknowledgement scheme. From the diagram derive a formula for the utilization of a "go back N " scheme assuming the link is error free.
[10 marks]
(c) A link such as (a) has a length of 30 km and a data rate of 150 Mbps . It uses a packet size of 2000 bits and an acknowledgement size of 100 bits. Assuming that the propagation delay along the link is $5 \mu \mathrm{~s} / \mathrm{km}$ and that the link is error free, calculate: -
(i) The utilization if a frame window size of 1 is used ($\mathrm{N}=1$).
[2 marks]
(ii) The minimum frame window size (N) needed to ensure a utilization of 100%.
4. For the communications channel model illustrated in Figure 1 below: -

show that if:

$$
\beta_{1}=p\left(1-e_{1}-e_{2}\right)+e_{2} \quad \text { and } \quad \beta_{2}=p\left(e_{1}+e_{2}-1\right)+1-e_{2}
$$

then: -
(a) $\quad H(Y)=-\log _{2}\left[\beta_{1}^{\beta_{1}}{\left.\beta_{2}^{\beta_{2}}\right] .}^{2}\right.$
(b)

$$
I(X ; Y)=\log _{2}\left[\frac{\left(\left(1-e_{1}\right)^{1-e_{1}} e_{1}^{e_{1}}\right)^{p}\left(\left(1-e_{2}\right)^{1-e_{2}} e_{2}^{e_{2}}\right)^{1-p}}{\beta_{1}^{\beta_{1}} \beta_{2}^{\beta_{2}}}\right]
$$

[8 marks]
(c) Hence, or otherwise, for the particular case of a binary symmetric channel with equiprobable input symbols, deduce the appropriate expression for $I(X ; Y)$.
[6 marks]
5. (a) For a parity-check linear block code, show that the syndrome \underline{s} is the sum (modulo 2) of those rows of the matrix \underline{H}^{T} corresponding to the error locations in the error pattern.
(b) A parity-check linear block code has the parity-check matrix: -

```
            H}=[\begin{array}{llllll}{1}&{0}&{1}&{1}&{0}&{0}\\{1}&{1}&{0}&{0}&{1}&{0}\\{0}&{1}&{1}&{0}&{0}&{1}\end{array}]
If the received word is 110110, decode this received word.
```

[4 marks]
(c) Prove using the Hamming bound, or otherwise, that this parity-check code can reliably correct no more than 1 error.
[4 marks]
(d) By choosing a suitable code word and introducing 2 errors, show that the paritycheck linear block code fails to recover the original code word.
6. (a) Given that the output signal to noise ratio (SNR) of a matched filter receiver subject to additive white Gaussian noise (AWGN) with power spectral density $\eta / 2 \mathrm{~W} / \mathrm{Hz}$ is given by $2 E_{d} / \eta$ where E_{d} denotes the energy in the difference signal, show using the Schwarz inequality (which states: -

$$
\left.\left|\int_{-\infty}^{\infty} f_{1}(\omega) f_{2}(\omega) d \omega\right|^{2} \leq \int_{-\infty}^{\infty}\left|f_{1}(\omega)\right|^{2} d \omega \int_{-\infty}^{\infty}\left|f_{2}(\omega)\right|^{2} d \omega\right),
$$

or otherwise, that the optimum output SNR is given by: -

$$
\left(\frac{S}{N}\right)_{\text {Optimum }}=\frac{8 E}{\eta}
$$

where we stipulate that the signaling waveforms $s_{1}(t)$ and $s_{2}(t)$ must have the same signal energy E.
(b) A frequency shift keying modulation scheme is defined by: -

$$
s_{i}(t)= \begin{cases}A \cos \left(\omega_{1} t\right) & 0 \leq t \leq T_{f} \\ A \cos \left(\omega_{2} t\right) & 0 \leq t \leq T_{f} .\end{cases}
$$

Show that if $\omega_{1} T_{f} \gg 1, \omega_{2} T_{f} \gg 1$ and $\left(\omega_{1}-\omega_{2}\right) T_{f} \gg 1$ then the probability of error P_{e} when subject to AWGN with power spectral density $\eta / 2 \mathrm{~W} / \mathrm{Hz}$ and optimum matched filtering detection is used is approximated by: -

$$
P_{e} \approx Q\left[\sqrt{\frac{A^{2} T_{f}}{2 \eta}}\right] .
$$

(c) A phase shift keying modulation scheme is defined by: -

$$
s_{i}(t)=\left\{\begin{array}{cl}
A \cos \left(\omega_{1} t\right) & 0 \leq t \leq T_{\phi} \\
-A \cos \left(\omega_{1} t\right) & 0 \leq t \leq T_{\phi}
\end{array}\right.
$$

where T_{ϕ} is an integer times $1 / f_{1}$ (where $\omega_{1}=2 \pi f_{1}$). If, under the same conditions as (b) above, this scheme must possess the same probability of error P_{e} as that of (b) above, deduce the value of T_{f} / T_{ϕ} and comment upon your result.
7. (a) Derive a suitable expression for the probability of error (denoted P_{e} where $P_{e}=Q\left[\sqrt{\frac{E_{d}}{2 \eta}}\right]$) for direct sequence spread spectrum (DSSS) signals in additive white Gaussian noise channels if the original information sequence is represented by a simple bipolar baseband signal.
(b) Describe the relevant properties of m-sequence spreading codes as employed in DSSS communication systems.
(c) Summarise the principle characteristics of DSSS communications.

