OLLSCOIL NA hEIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLAISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER 2002

B.E. DEGREE (ELECTRICAL)

APPLIED POWER ELECTRONICS AND MOTION CONTROL (EE4001)

Prof. G. Irwin Prof. R. Yacamini Dr. J.G. Hayes

Time Allowed – 3 Hours

Attempt all five questions. Each question carries equal marks.

The use of non-programmable electronic calculators is permitted.

Question 1 - DC Motor and Power Electronics

The system parameters of a permanent-magnet dc motor supplied by a switch-mode PWM dc-dc converter are as follows: armature resistance $R_{\rm a}=0.35\,\Omega$, armature inductance $L_{\rm a}=1.5$ mH, motor moment of inertia 0.02 kg m², motor voltage constant $k_{\rm E}=0.5$ V/(rad/s), converter dc bus voltage $V_{\rm d}=200$ V, switching frequency $f_{\rm S}=25$ kHz, and amplitude of triangular waveform control voltage $V_{\rm tri}=3$ V. The motor is spinning in a forward direction at a speed of 1500 RPM and supplies a load torque of 10 Nm.

- A. Calculate the following: (i) the applied armature voltage V_{AB} ; (ii) duty ratios for (a) overall converter, (b) pole A, and (c) pole B; and (iii) the peak-to-peak ripple on the armature current.
- B. Sketch the waveforms for the triangular voltage $v_{tri}(t)$, control voltage $v_c(t)$, pole A voltage $v_A(t)$, the pole B voltage $v_B(t)$, armature voltage $v_{AB}(t)$, armature current $i_a(t)$ and the dc bus current $i_d(t)$.

Question 2 – Mechanical Systems and PMAC Motor

A. An electric vehicle has the following attributes: mass M = 1400 kg, drag co-efficient $C_{\rm W} = 0.19$, vehicle cross section A = 2.4 m², co-efficient of rolling resistance $C_{\rm RR} = 0.0044$, wheel diameter $d_{\rm W} = 0.6$ m, gear ratio from rotor to drive axle n = 10.946, and a nominal gear efficiency of 95%. Neglect internal moment of inertia and use density of air $\rho_{\rm air} = 1.202$ kg m⁻³.

The vehicle is required to accelerate from 0 to 100 km/hr in 8 s on a flat road surface under calm wind conditions. Instantaneously at 60 km/hr, calculate (i) the aerodynamic drag, (ii) the rolling resistance, (iii) the acceleration force, and (iv) the electromagnetic torque required from the rotor.

- B. A four-pole three-phase permanent-magnet ac motor is used for traction in a hybridelectric vehicle. The vector-controlled motor is rated at 100 Nm at 6000 rpm, and is powered by a three-phase sinusoidal PWM inverter supplied by a 300 V NiMH battery pack. The motor efficiency and power factor at rated power are 90% and 0.9, respectively. Determine the following drive parameters at rated power and speed:
 - (i) per-phase voltage, $V_{\rm ph}$,
 - (ii) per-phase back emf, $E_{\rm ph}$,
 - (iii) per-phase current, I_{ph} ,
 - (iv) per-phase synchronous inductance, $L_{\rm S}$,
 - (v) motor voltage and torque constants, $k_{\rm E}$ and $k_{\rm T}$,
 - (vi) motor copper loss, given a per-phase series resistance of $R_S = 15 \text{ m}\Omega$,
 - (vii) core, friction and windage losses for the machine.

Question 3 – Power Semiconductors

The IRFP460 power MOSFET from International Rectifier operates in a boost converter switching at 20 kHz with a dc link voltage $V_d = 400$ V, and load current $I_o = 20$ A. The MOSFET is driven by a voltage-source square wave v_{GG} , of amplitude 0 V to 15 V, in series with an external gate resistance $R_G = 25 \Omega$. Assume the boost diode has a 1V forward drop and no reverse recovery.

- A. Sketch $v_{GG}(t)$, $v_{GS}(t)$, $v_{DS}(t)$, and $i_{D}(t)$ during turn-on of the MOSFET.
- B. Determine the following parameters from the data sheet at a junction temperature of 80°C: threshold voltage, forward transconductance, gate-source capacitance, gate-drain capacitance, and on-state resistance.
- C. Calculate the following (i) turn-on delay time t_{don} , (ii) current rise time t_{ir} , (iii) voltage fall time t_{fv} and (iv) turn-on energy loss.

Ouestion 4 – Induction Motor

A symmetrical, four-pole, three-phase, wye-connected induction motor is characterized as follows. The dc phase-to-phase resistance is measured to be 1.1 Ω . A no-load test with an applied voltage of 208 V (line-line), 60 Hz, results in a phase current of 6.5 A, and a three-phase power of 175 W. A locked-rotor test with an applied voltage of 53 V (line-line), 60 Hz, results in a phase current of 18.2 A, and a three-phase power of 900 W.

- A. Estimate the per-phase equivalent circuit parameters: $R_{\rm S}$, $L_{\rm LS}$, $L_{\rm M}$, $L_{\rm LR}$, and $R_{\rm R}$.
- B. When supplied by a current-controlled inverter operating at 60 Hz, the motor generates a torque of 50 Nm at 1764 rpm. Estimate (i) the sum of the core and mechanical power losses, and (ii) the per-phase rotor current.
- C. Determine approximate values for the applied per-phase voltage, per-phase current and power factor.

Question 5 – Controller Design

The system parameters of a permanent-magnet dc motor supplied by a switch-mode PWM dc-dc converter are as follows: armature resistance $R_a = 2~\Omega$, electrical time constant $\tau_e = 0.5$ ms, motor voltage constant $k_E = 0.2~V/(rad/s)$, controller IC UC3637, armature current transducer LA 03-PB, input control +/-2 V to output an torque of +/- 0.4 Nm. Torque is controlled by regulating the armature current with a proportional-integral controller. The feedback effects of the motor-induced back emf and the load torque on the control loop can be neglected.

- A. Referring to the schematic in Fig. 1 determine (i) the amplitude of triangular waveform control voltage, $V_{\rm TH}$, (ii) switching frequency, $f_{\rm S}$, (iii) the gain of the PWM power amplifier, and (iv) the gain of the feedback stage.
- B. Sketch a block diagram of the current-control loop.
- C. Derive the open-loop gain function of the current loop.
- D. Calculate the values of the error amplifier compensation components $R_{\rm I}$, $R_{\rm F}$, and $C_{\rm F}$ selecting the current loop crossover frequency to be one tenth of the switching frequency, and the phase margin to be 45°.

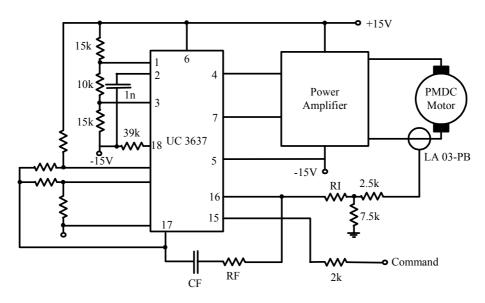


Figure 1